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The active wave control of the linear, axially moving string with general boundary
conditions is presented in this paper. Considerations of general boundary conditions are
important from both practical and experimental viewpoints. The active control law is
established by employing the idea of wave cancellation. An exact, closed-form expression for
the transverse response of the controlled system, consisting of the #exible structure, the wave
controller, and the sensing and actuating devices, is derived in the frequency domain. Two
actuation forces, one upstream and one downstream of an excitation force, are applied. The
proposed control law shows that all modes of the string are controlled and the vibration in
the regions upstream and downstream of the control forces can be cancelled. However, these
results are based on ideal conditions and the assumption of zero initial conditions at the
non-"xed boundaries. E!ects of non-zero boundary motions at the instant of application of
the control forces are examined and the control is shown to be e!ective under these
conditions. The stability and robustness of the control forces are improved by the
introduction of a stabilization coe$cient in the control law. The e!ectiveness, robustness
and stability of the control forces are demonstrated by simulations and veri"ed by
experiments on axially moving belt drive and chain drive systems.

( 2000 Academic Press
1. INTRODUCTION

The traveling string supported by two eyelets represents a simple and yet useful model that
has been employed for a long time to describe the dynamics of machine elements for
transmitting power, materials, or information [1]. Applications for this class of mechanical
systems include chain and belt drives, band saws, magnetic tapes, and paper webs [2}4]
which are collectively termed axially moving materials. Despite the many advantages of this
machine element, noise and vibration associated with its motion have limited its utility in
applications, in particular in high-speed operations, and when lighter and higher quality
materials are required. For high-speed and precision applications, it is thus desirable to
introduce suitable control methods to attenuate the vibration of the translating element in
order to improve its performance.

Vibration control of #exible structures can be introduced by either passive or active
methods, or a combination [5]. Techniques of active control are traditionally based on
direct feedback control [6] and modal control [7] which models a continuous system by
"nite degrees of freedom or modes. The uncontrolled or residual modes can then destabilize
the system via a spillover e!ect [7]. Because of this limitation, the feedforward control
sCurrently at Ford Motor Company, Dearborn, MI, U.S.A.
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approach [8] was proposed. The idea is to superimpose a secondary source on the pri-
mary excitation to cancel or absorb the travelling waves in the structure [9}14]. This
active control scheme has its origin in sound reduction [15] and has been adopted
in various vibration and noise control applications [8, 16]. The advantages of this
technique are: (1) the control is free from the spillover e!ect and all modes can be controlled
[9, 11], (2) the controller is suitable for vibration suppression away from the excitation
force. However, it has been shown for the one-dimensional wave equation that the
feedforward control is not robust and can be unstable if there are errors in the
measurements [11]. Control of travelling waves in large space structures was examined in
reference [17] and applications of modal space control for active wave suppression were
studied in references [12, 18]. In a series of papers [19}21], Tanaka and Kikushima
developed the active sink method to suppress all the modes of a #exible beam. Other
pertinent papers include a theoretical and experimental work on the wave-absorbing
control of a hanging beam [22], and the power #ow and strength requirements of active
wave control of a #exible beam [23].

The translation motion of a string makes it a gyroscopic system, and one consequence is
that the modes do not constitute a standing wave pattern. The modes are non-symmetrical
and propagating waves have spatially dependent phases. This gyroscopic property thus
renders the construction of observers di$cult. To avoid the spillover instability, Yang and
Mote proposed a new approach for the active control of the translating string by
a distributed transfer function formulation [24]. Time delay and velocity feedback type of
controllers were developed [25}27]. Ulsoy examined the vibration control of gyroscopic
systems by a pole allocation method [28]. Boundary control by a Lyapunov-type analysis
was investigated for both the linear and non-linear moving strings [29}33]. It was shown
that the non-linear string can be stabilized by a linear velocity feedback control at
a boundary [32, 33]. The vibration suppression of a non-linear travelling string by
a variable structure control was examined in reference [34].

Application of wave cancellation to the vibration control of an axially moving string was
"rst considered by Chung and Tan [35]. The idea is to apply a boundary control force such
that this boundary appears to be in"nite (no wave is re#ected). It was shown that all
vibration modes can be stabilized and that the controlled string has no resonance. The
proposed controller consists of a velocity sensor, a proportional gain and a time delay, and
is e!ective and fairly robust for both unconstrained and constrained string systems.
However, practical issues limit the applicability of boundary control for axially moving
systems. To circumvent this limitation, a space feedforward control of the travelling waves
was proposed [36]. With this controller, vibration in the region downstream of the control
force can be cancelled.

Despite the usefulness of the wave absorption concept, two issues remain unsolved before
it can be applied to practical situations of axially moving systems. First, the "xed}
"xed boundary of reference [36] is an idealization which decouples the translating
string spans. Measurement errors, model uncertainties, and even time-varying conditions
require that a general boundary condition model to be included in the control problem.
Second, the stability of this type of feedforward control must be improved. The purpose
of this paper is to develop an active wave control scheme for the axially moving string, with
emphasis to resolve these two issues. Veri"cations of the theoretical predictions are
provided by experiments on belt drive and chain drive systems. This manuscript is
organized as follows. The control model is given in section 2 and the wave dynamics of
the uncontrolled string is summarized in section 3. Design and stability of the active
wave controller are discussed in sections 4 and 5, followed by experimental veri"cations in
section 6.
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2. PROBLEM FORMULATION

Figure 1 shows an axially moving string of uniform density o and under constant tension
P, travelling at a constant transport velocity< between two arbitrary boundaries separated
by a distance ¸. The string is excited transversely by an external force F (X, ¹ ). The
following non-dimensional variables are introduced:

x"
X

¸

, w"

=

¸

, f"
F¸

P
, t"¹ A

P

o¸2B
1@2

, c"< A
o
PB

1@2
. (1)

Applying the Hamilton's Principle, the normalized equation of motion governing the
transverse displacement w(x, t) of the translating string is [1]

w
,tt

(x, t)#2cw
,xt

(x, t)!(1!c2 )w
,xx

(x, t)"f (x, t)#q
1
(x, t)#q

2
(x, t), x3(0, 1), t*0, (2)

where ( ' )
,t

denotes L( ' )/Lt, ( ' )
,x

denotes L( ' )/Lx, and the control forces are

q
1
(x, t)"d (x!a

1
)q

a1
(t), q

2
(x, t)"d (x!a

2
)q

a2
(t). (3)

De"ne the region to the right (left) of an applied force as downstream (upstream). The
control objective is to design control laws for the point actuator forces q

1
(x, t) and q

2
(x, t)

such that the vibrations in the upstream and downstream regions of the control forces are
cancelled. Initial conditions for the string are speci"ed as

w (x, t) D
t/0

"u
0
(x), w

,t
(x, t) D

t/0
"v

0
(x), x3(0, 1) (4)

and the boundary conditions are

Mw(x, t) D
x/0

"c
B0

(t), Nw(x, t) D
x/1

"c
B1

(t), t*0. (5)

In the above equation, M and N are second order temporal-spatial, linear di!erential
operators. A critical speed c

cr
"1 exists at which all natural frequencies of the uncontrolled

string vanish and a buckling type of instability occurs [2]. In the present study, assume
c(1.
Figure 1. Schematic diagram of an axially moving string with active wave control.
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3. WAVE DYNAMICS OF THE UNCONTROLLED STRING

In order to derive the control laws, the wave dynamics of the uncontrolled axially moving
string (i.e., q

i
(x, t)"0) is brie#y described here; see details in reference [37]. Introduce the

change of variables

f"x!(1#c)t, g"x#(1!c)t. (6)

The homogeneous &&wave equation'' (2) then becomes

L2w(f, g)

Lf Lg
"0, (7)

which states that the solution of equation (7) consists of disturbances propagating to the
right at speed 1#c and to the left at speed 1!c. These are the forward and backward
propagating waves respectively. The response and spectrum of the string are determined
from the system transfer functions [38]. Accordingly, the Laplace transform of equations
(2), (4) and (5) with respect to t gives

s2wN (x, s)#2cs
L
Lx

wN (x, 2)!(1!c2 )
L2

Lx2
wN (x s)"fM

e
(x, s), (8a)

fM
e
(x, s),fM (x, s)#su

0
(x)#v

0
(x)#2c

L
Lx

u
0
(x), (8b)

MM wN (x, s) D
x/0

"A
0
(s)wN (0, s)#B

0
(s)wN

,x
(0, s)"cN

B0
#cN

I0
,cN

t0
(s), (8c)

NM wN (x, s) D
x/1

"A
1
(s)wN (1, s)#B

1
(s)wN

,x
(1, s)"cN

B1
#cN

I1
,cN

t1
(s), (8d)

where s is the complex Laplace transform variable, wN ( ' , s), fM ( ' , s) and c6
Bj

(s) are the Laplace
transform of w ( ' , t), f ( ' , t) and c

Bj
(t), respectively, and c6

Ij
(s) is a polynomial of

s representing the initial conditions at the boundaries x"0, 1. Henceforth, the index
j"0, 1 is used to denote the left and right boundaries respectively. MM and NM are the
operators M and N with their time derivative operators L/Lt and L2/Lt2 replaced by s and s2
respectively.

From equations (6) and (7), the basic wave motion is of the form e(st`jx) where j is
a complex wave number. From equation (8a), the characteristic roots of the homogeneous
equation

j
1
"

s

1!c
, j

2
"

!s

1#c
(9)

are the wave numbers of the backward and forward propagating waves respectively. The
exact response solution to equations (8a}d) is

wN (x, s)"P
1

0

G(x, m, s) fM
e
(m, s) dm#

1
+
j/0

h
j
(x, s)c6

j
(s), (10)
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where the closed-form transfer function G(x, m, s) and the boundary in#uence functions
h
j
(x, s) of the translating string can be evaluated explicitly [38]:

G(x,m, s)"G
ej2(x~m)#h

0
(s)ej2x~j1m#h

0
(s)h

1
(s)ej2~j1(1`m~x)#h

1
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2s(1!h
0
(s)h

1
(s)ej2~j1)

x*m,

e~j1(m~x)#h
0
(s)ej2x~j1m#h

0
(s)h

1
(s)ej2(1`x~m)~j1#h

1
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2s(1!h
0
(s)h

1
(s)ej2~j1 )

x)m,

(11a)

h
0
(x, s)"

ej2s#h
1
(s)ej2~j1(1~x)

1!h
0
(s)h

1
(s)ej2~j1

, h
1
(x, s)"

e~j1(1~x)#h
0
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1!h
0
(s)h

1
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. (11b, c)

By equations (10) and (11b, c), the excitations c6
j
(s) are

c6
0
(s)"

c6
t0

(s)

A
0
(s)#j

2
B
0
(s)

, c6
1
(s)"

c6
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(s)

A
1
(s)#j

1
B

1
(s)
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In equations (11a}c), the complex boundary coe$cient functions are

h
0
(s)"

1#(1#c)sZ
0
(s)

1!(1!c)sZ
0
(s)

, h
1
(s)"!

1#(1!c)sZ
1
(s)

1!(1#c)sZ
1
(s)

, (13)

where the complex compliance functions (displacement/force) Z
j
(s) are de"ned as [39]

Z
0
(s)"

!wN (0, s)

(1!c2)wN
,x

(0, s)
, Z

1
(s)"

wN (1, s)

(1!c2 )wN
,x

(1, s)
. (14)

In general, string spans are decoupled only for the case of "xed}"xed boundary condition.
To derive h

0
(s), it is assumed that material particles arrive at x"0 from !R and that

waves are transmitted through this boundary to !R. A similar assumption applies to the
boundary at x"1. Consider an example of boundary with a dashpot. It can be shown that
Z

0
(s)"!1/[s(1#c)#sb

0
], where b

0
is a damping constant. From equations (13),

h
0
(s)"!b

0
/(2#b

0
) which is as expected the re#ection coe$cient [40, 41]. Hence,

depending on the modelling assumptions, the e!ects of general boundary conditions on the
string response can be conveniently described by h

j
(s).

It should be noted that the exponential functions in equations (11a}c) represent delay
functions in the time domain. For example, ej2(x~m) is associated with a forward propagating
wave travelling from m (where the disturbance is applied) to x (where the response is
measured). From equation (11a), the system eigenvalues are determined from the
characteristic equation

1!h
0
(s)h

1
(s)ej2~j1"0. (15)

Based on equations (11a}c), the response solution (10) can be expressed as

wN (x, s)"h
0
(s)h

1
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D
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]P
1

x
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U
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U
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1
+
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j
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j

(x, s)]c6
j
(s), (16)
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where the propagation functions are listed in Appendix A, and their physical meanings are
given in reference [37]. In equation (16), subscripts D and ; denote the downstream and
upstream positions respectively, while superscripts # and ! denote the forward and
backward directions of wave propagation respectively. The G propagation functions are
unit impulse response functions. For example, in response to an applied impulse, G`

D
(x, m, s)

represents the propagation of the forward wave in the downstream region. In view of
equation (16), the response consists of a resident wave (the "rst term) and propagating
waves due to external excitations, initial conditions and boundary conditions. The resident
wave involves both h

0
(s) and h

1
(s) and a total time delay t

td
"1/(1#c)#1/(1!c), the

time required for a wave to propagate from the location x, re#ected by both boundaries
(separated by a distance l"1), and back to x.

4. DESIGN OF ACTIVE WAVE CONTROLLER

Applying the concept of convolution to equation (16) and from earlier results [35], it is
seen that the design of controllers is independent of the type of excitation. Thus, in Figure 1,
consider a point load applied at x"d:

fM (x, s)"d (x!d) fM
d
(s). (17)

The Laplace transform of the control forces (3) gives

qN
1
(x, s)"d (x!a

1
)qN
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(s), a

1
(d(a

2
, (18)

qN
2
(x, s)"d (x!a

2
)qN

a2
(s), a

1
(d(a

2
, (19)

The objective of the active vibration control is to cancel the vibration of the moving string
in the regions x)a

1
and x*a

2
. For zero initial conditions, the response of the string is

for 0)x)a
1
:

wN (x, s)"h
0
(s)h

1
(s)ej2~j1wN (x, s)#[G`

U
(x, d, s)#G~

U
(x, d, s)] fM

d
(s)

#[G`
U
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1
, s)#G~

U
(x, a

1
, s)]qN
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(s)#[G`

U
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2
, s)#G~

U
(x, a

2
, s)]qN
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(s), (20a)

for a
1
)x)d:
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0
(s)h

1
(s)ej2~j1wN (x, s)#[G`

U
(x, d, s)#G~

U
(x, d, s)] fM

d
(s)
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D
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1
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D
(x, a

1
, s)]qN
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(s)#[G`

U
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2
, s)#G~

U
(x, a

2
, s)]qN
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(s), (20b)

for d)x)a
2
:

wN (x, s)"h
0
(s)h

1
(s)ej2~j1wN (x, s)#[G`

D
(x, d, s)#G~

D
(x, d, s)] fM

d
(s)
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D

(x, a
1
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D
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1
, s)]qN
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(s)#[G`

U
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2
, s)#G~

U
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2
, s)]qN
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for a
2
)x)1:
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0
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1
(s)ej2~j1wN (x, s)#[G`

D
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D
(x, d, s)] fM

d
(s)

#[G`
D

(x, a
1
, s)#G~

D
(x, a

1
, s)]qN

a1
(s)#[G`

D
(x, a

2
, s)#G~

D
(x, a

2
, s)]qN

a2
(s). (20d)
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It is realized that no wave can propagate in x)a
1

(x*a
2
) if all backward (forward)

propagating waves in this region are conceled by qN
a1

(s) (qN
a2

(s)). Based on this idea and from
equations (20a, d), the following control laws are proposed:

G~
U

(x, a
1
, s)qN

a1
(s)"!G~

U
(x, d, s) fM

d
(s)!G~

U
(x, a

2
, s)qN

a2
(s), (21)

G`
D

(x, a
2
, s)qN

a2
(s)"!G`

D
(x, d, s) fM

d
(s)!G`

D
(x, a

1
, s)qN

a1
(s). (22)

Simplifying equations (21) and (22) leads to explicit expressions of the control forces in
terms of fM

d
(s):

qN
a1

(s)"
ej2(a2~d)~j1(a2~a1)!e~j1(d~a1)

1!e(j2~j1)(a2~a1)
fM
d
(s), (23)

qN
a2

(s)"
ej2(a2~a1)~j1(d~a1)!ej2(a2~d)

1!e(j2~j1)(a2~a1)
fM
d
(s), (24)

Substituting the above results into equations (20a}d) gives the response solution of the
controlled axially moving string with zero initial conditions:

wN (x, s)"

G
0, 0)x)a

1
,

e~j1(d~x)!ej2(x~a1)~j1(d~a1)#ej2(a2`x~d~a1)~j1(a2~a1)!ej2(a2~d)~j1(a2~x)

2s (1!e(j2~j1)(a2~a1) )
fM
d
(s), a

1
)x)d,

ej2(x~d)!ej2(x~a1)~j1(d~a1)#ej2(a2~a1)~j1(a2`d~x~a1)!ej2(a2~d)~j1(a2~x)

2s(1!e(j2~j1)(a2~a1) )
fM
d
(s), d)x)a

2
,

0, a
2
)x)1.

(25)

The above result states that the response of the controlled string in the regions x)a
1

and
x*a

2
becomes zero if the uncontrolled string is not at resonance. It was pointed out that,

for a "xed}"xed string, the same result was obtained by either imposing a partial wave
cancellation (i.e., those of equations (21, 22)) or cancelling both the forward and backward
waves (total cancellation) [36]. However, total wave cancellation leads to much more
complicated control laws. For the present problem with arbitrary boundary conditions, it
can also be shown that total wave cancellation leads to the same result given by equation
(25). The response of the controlled string to a distributed excitation force can be expressed
in the integral form

wN (x, s)"P
a2

a1

G
c
(x, m, s) fM

e
(m, s) dm, (26)

where the closed-loop transfer function G
c
(x, m, s) is deduced from equation (25) by

replacing d with m.
It should be noted that the implementation of the control laws (23) and (24) is not feasible

since excitation force signals are di$cult to measure. Control forces are generally expressed
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in terms of displacement or velocity. It is thus necessary to establish relations between the
control forces and displacement measurements. Four sensors are located along the string as
shown in Figure 1. As shown in Appendix B, the control forces are derived as

qN
a1
"!

2s[wN (x
2
, s)!wN (x

1
, s)ej2(x2~x1)]e~j1(x2~a1)

1!e(j2~j1)(x2~x1)
, (27)

qN
a2
"!

2s[wN (x
3
, s)!wN (x

4
, s)ej2(x4~x3)]ej2(a2~x3)

1!e(j2~j1)(x4~x3)
1. (28)

4.1. REMARKS

(1) With the control forces given by equations (27) and (28), the vibration of the
translating string in x)a

1
and x*a

2
tends to zero asymptotically (see equation

(25)).
(2) Comparing equation (25) with equation (11a), it can be seen that the transfer functions

of the uncontrolled and controlled strings are of the same form, but the controlled
string has an e!ective length of a,a

2
!a

1
. Since h

0
(s)"h

1
(s)"!1 for the

"xed}"xed boundary condition, it is concluded that the control forces e!ectively act
as "xed supports (holders) which limit the vibration of the string within x3 (a

1
, a

2
)

and eliminate any vibration outside of this region. A straightforward derivation
shows that qN

a1
(s) and qN

a2
(s) are indeed equal to the boundary support forces of

a "xed}"xed string with length a. It should be noted that, since the boundary
conditions of the uncontrolled string are arbitrary, these results hold even when there
are uncertainties in the boundary conditions.

Corollary. Suppose only q
2
(x, t) is applied at x"a

2
(downstream wave cancellation),

then the controlled string is e+ectively of length a
2
with boundary condition described by

h
0
(s) at x"0 and h

a2
(s)"!1 at x"a

2
. ¹he corresponding G

c
(x, m, s) and system

response can easily be deduced from equation (11a).

(3) Equations (27) and (28) show that each controller consists of a velocity sensor and
time delay of two observers. These control laws are easy to implement.

(4) The controllers are shown to be independent of the location and type of the excitation
force, and the boundary conditions of the uncontrolled string.

4.2. NUMERICAL RESULTS

The following non-dimensional parameters are used to obtain the numerical results:

c"0)3, x
1
"0)4, x

2
"0)45, x

3
"0)55, x

4
"0)6, d"0)5, a

1
"0)3, a

2
"0)7.

A dashpot is placed at each boundary with damping constants b
0
"b

1
"2. A sinusoidal

point load of frequency u"3)2n is applied. All simulation results are obtained by MatLab.
In order to understand the simulation results, it is noted that the control forces (27) and

(28) are derived under the assumption of zero initial conditions at the boundaries, i.e.,
c6
j
(s)"0 in equation (16). However, in practice, control forces may not be applied at the

same time when the system is &&turned on'' (at t"0). Thus, c6
j
(s) may be non-zero at the

instant t
c
when the control is applied. Hence, for systems with non-"xed boundaries, the

controller may not be able to suppress the vibration to zero as the control objective has



Figure 2. An example of the time history of &&real-time'' control forces.

Figure 3. An example of the time history of &&simulation'' control forces.
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stated, even though the initial conditions are zero. The control force which is applied at t
c
is

de"ned as &&real time'', i.e., it is computed without any knowledge of the response history
during 0)t)t

c
, and the control force which tracks the response history during 0)t)t

c
as &&simulation''. The latter is suitably termed &&simulation'' because it can be achieved only
in simulations but not in real time control.

The &&real time'' and &&simulation'' control forces for this example are plotted in Figures
2 and 3. The corresponding responses of the controlled system are shown in Figures 4 and 5.



Figure 4. Response of the axially moving string under a sinusoidal point load and controlled by the &&real-time''
control forces of Figure 2.

Figure 5. Response of the axially moving string under a sinusoidal point load and controlled by the
&&simulation'' control forces of Figure 3.
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In Figure 4, it is seen that the controlled vibration does not go to zero as a result of non-
zero motions at the boundaries when the control forces are applied at t

c
. However, the

controlled amplitude is much smaller than the uncontrolled one. In Figure 5, as predicted
by the control laws, the vibration is suppressed to zero in x)a

1
and x*a

2
. Comparing

Figures 4 and 5, it is seen that the control is still e!ective in the presence of non-zero
initial conditions at non-"xed boundaries. For this type of feedforward control,
disturbances in the uncontrolled regions and boundary excitations can be attenuated by
feedback control [36]. Numerical results show that similar control e!ects are obtained
when di!erent types of boundary conditions are considered and when a random excitation
force is applied.
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5. STABILITY OF CONTROLLER

Simulation results have shown that the active wave control is e!ective for suppressing the
vibration in the upstream and downstream regions of the control forces. However, this is
based on ideal conditions, and the stability and robustness of the control scheme must be
examined. To study the stability of the controlled system, a stability theorem is "rst stated.
A stabilization coe$cient is then introduced to improve the robustness of the control. The
stability of general linear time-delay systems can be referred to, for example, reference [42],
and for the axially moving string, see for example reference [24].

The characteristic equations of both the uncontrolled and controlled systems have the
general form of

1!u (s)e~qs"0, (29)

where u (s) is a function related to the boundary conditions and q is a time delay. It is noted
that the denominators of the control forces are also in the form of equation (29).

Theorem. Consider a system which has a characteristic equation of the form (29), where q is
positive real. ¹he system is asymptotically stable i+ Du (s) D(1, marginally stable i+ Du(s) D"1,
and unstable i+ Du (s) D'1.

The proof is given in Appendix C.
From equation (29), it is noted that the stability of the uncontrolled string is a!ected by

the boundary conditions since u(s)"h
0
(s)h

1
(s). Consider the "xed}"xed boundary,

h
0
(s)"h

1
(s)"!1. By the theorem, the string is marginally stable because Du (s) D"1. Thus,

the control forces (27) and (28) are also marginally stable. This means that the proposed
active vibration control scheme is not robust enough to perform a stable control in real time
under a noisy environment of practical test conditions. This is typical of a feedforward
control [11]. Figure 6 shows the time response of the controlled axially moving string when
there is a 5% white noise in the amplitude of the excitation force applied at x"0)05. Only
one control force q

2
(x, t) is applied at a

2
"0)5. It is seen that the downstream vibration

does not go to zero, but is bounded. However, the control force, shown in Figure 7, appears
Figure 6. Response of the controlled axially moving string with 5% white noise in the amplitude of the
sinusoidal excitation. Control force q

a1
(x, t)"0; c"0)3, d"0)05, x

3
"0)25, x

4
"0)3, a

2
"0)5.
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to increase unboundedly with time. It is thus necessary to resolve the robustness issue of the
controllers before they can be applied for real-time control. Based on the stability theorem,
stabilization coe$cients s

c1
(1 and s

c2
(1 are introduced to the control forces (27) and

(28) in order to improve their stability. The modi"ed control forces become

qN
a1

(s)"!

2s[wN (x
2
, s)!wN (x

1
, s)ej2(x2~x1)]e~j1(x2~a1)

1!s
c1

e(j2~j1)(x2~x1)
, (30)

qN
a2

(s)"!

2s[wN (x
3
, s)!wN (x

4
, s)e~j1(x4~x3)]ej2(a2~x3)

1!s e(j2~j1)(x4~x3)
. (31)
Figure 7. Time history of the control force when the excitation force has 5% noise, s
c2
"1 (no stabilization

e!ect).

Figure 8. Time history of the control force when the excitation force has 5% noise, s
c2
"0)8.

c2
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Note that equations (30) and (31) are obtained without changing the basic structure of the
control law. The stabilization coe$cients e!ectively add damping to the system. A smaller
coe$cient improves the robustness but reduces the performance of the controller. From the
experiments (see section 6), compromised values of the stabilization coe$cients are found to
be between 0)8 and 0)9. Figure 8 plots the control force q

a2
(0)5, t) with s

c2
"0)8, based on

5% noise in the excitation force. It is noted that the control signal is now bounded.

6. EXPERIMENTAL SET-UP AND RESULTS

A schematic of the active vibration control system is depicted in Figure 9. Experiments
were conducted on metallic belt drive and automotive engine chain drive systems.
A photograph of the experimental set-up of sensors and actuators for the belt drive system is
shown in Figure 10. The driving pulley/sprocket is driven directly by a DC motor with an
adjustable speed range up to 1750 r.p.m. The test stand allows experiments to be conducted
on belts/chains of di!erent lengths and under di!erent tensions (note the tension
adjustment mechanism in Figure 9). On-line data processing and active control are
processed by a high-performance DSP board (TMS320C30). Figure 10 shows the set-up for
downstream wave cancellation experiments. Displacements are observed by non-contact
sensors (Model Electro 85003) located at X

3
and X

4
, and another displacement signal is

measured downstream at X
5
for the comparison of uncontrolled and controlled amplitudes.

Excitation and controller actuation are provided by magnetic pickups (Model 3040H20)
with a maximum response frequency of 40 kHz. The function of these pickups (sensors)
become actuation when the reverse principle of electromagnetism is applied.

The vibration control experiments were conducted with only q
a2

(x, t). First, the e!ect of
the stabilization coe$cient and the correctness of the real-time control programming were
veri"ed. Control signals were generated and tested by feeding two sinusoidal signals of
50 Hz with 5% noise (these signals simulate the observer measurements) into the active
Figure 9. A schematic diagram of the experimental active vibration control system.



Figure 10. Experimental set-up of sensors and actuators for a belt drive system.

Figure 11. Time history of the control force signal with 5% noise in the input signals, s
c2
"1 (no stabilization

e!ect).
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wave controller. Figure 11 shows that the amplitude of the control signal increases with
time and is unstable. In Figure 12, a stabilization coe$cient s

c2
"0)9 is applied and the

signal becomes stable, demonstrating the improved stability and robustness of the
controller. This stabilization e!ect agrees well with the theoretical prediction discussed in
the previous section.

Experiments were performed on di!erent sets of operating parameters. All results showed
that the controller was e!ective. Two cases are reported here with parameters listed in Table
1. The belt vibration was measured in the speed range of 0}350 r.p.m. with 25 r.p.m.



Figure 12. Time history of the control force signal with 5% noise in the input signals, s
c2
"0)9.

Figure 13. Time history of the uncontrolled belt vibration as a function of speed. The belt tension is 99N, span
length is 0)576 m and displacement is measured at 0)41 m.

TABLE 1

¸ist of experimental parameters

Tension (N) Span length (m) X
3

(m) X
4

(m) A
2

(m) X
5

(m)

Belt 99)0 0)576 0)146 0)241 0)276 0)410
Chain 235)1 0)400 0)064 0)159 0)203 0)330
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Figure 14. Time history of the controlled belt vibration as a function of speed. The belt tension is 99 N, span
length is 0)576 m and displacement is measured at 0)41 m.

Figure 15. Frequency response of the uncontrolled ( }} } ) and controlled (**) chain vibrations at 1160 r.p.m.
The chain tension is 235)1 N, span length is 0)4 m and displacement is measured at 0)33 m.
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increment. The pulley diameter is 0)11 m and the transport velocity < thus varies from
0}2)02 m/s. Figures 13 and 14 (plotted on the same scale) compare the time histories of the
uncontrolled and controlled belt vibrations as a function of the pulley speed. The active
control reduces the vibration amplitude by 80}95% throughout this speed range. Other
results for di!erent belt tensions show that there is at least 70% reduction in the vibration
amplitude.

The chain vibration was measured in the speed range of 0}1750 r.p.m. with 87)5 r.p.m.
increment. The sprocket diameter is 0)12 m and the transport velocity < thus varies from
0}11 m/s. The fundamental natural frequency reduced from 22 Hz (at zero r.p.m.) to about
13)3 Hz (at 1750 r.p.m.). In Figure 15, the frequency responses of the uncontrolled and
controlled vibration at 1160 r.p.m. are plotted. It is seen that the active control suppresses
the amplitude of the resonant mode by at least 80%.
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7. SUMMARY AND CONCLUSIONS

An active vibration control scheme based on wave cancellation is developed for an axially
moving string with general boundary conditions. Two control forces are applied to
eliminate the vibration in the upstream and downstream regions. It is shown that the
control forces e!ectively act as "xed supports and are independent of the boundary
conditions. Each controller consists of a velocity sensor and time delay of two observers.
Although initial conditions are assumed to be zero at the non-"xed boundaries, simulation
results show that the controller is still e!ective. The active wave controller is shown to be
marginally stable. Its stability and robustness are improved by introducing a stabilization
coe$cient in the control forces without changing the structure of the control law. These
improvements are veri"ed by both simulations and experiments. The e!ectiveness of the
controller with stabilization coe$cient is experimentally demonstrated on both a moving
belt drive and an automotive engine chain drive systems.
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APPENDIX A: DEFINITION OF PROPAGATION FUNCTIONS

Referring to equation (16), the propagation functions are

G`
D

(x, m, s)"
1

2s
[ej2(x~m)#h

0
(s)ej2x~j1m], x'm, (A1)

G~
D

(x, m, s)"
1

2s
[h

1
(s)ej2(1~m)~j1(1~x)#h

0
(s)h

1
(s)ej2~j1(1`m~x)], x'm, (A2)

G`
U

(s, m, s)"
1

2s
[h

0
(s)ej2x~j1m#h

0
(s)h

1
(s)ej2(1`x~m)~j1], x(m, (A3)

G~
U

(x, m, s)"
1

2s
[e~j1(m~x)#h

1
(s)ej2(1~m)~j1(1~x)], x(m, (A4)

H`
0

(x, s)"ej2x, H~
0

(x, s)"h
1
(s)ej2~j1(1~x) (A5, A6)

H`
1

(x, s)"h
0
(s)ej2x~j1, H~

1
(x, s)"e~j1(1~x) (A7, A8)

APPENDIX B: DERIVATION OF CONTROL FORCES

For a
1
)x)d, de"ne
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2
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2
, s), (B2)

The following result can be established by applying equations (21) and (22) and
simplifying the algebra:
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Substituting equations (B1) and (B2) into equation (B3) and rearranging the result gives
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2
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1
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Then, the following result can be obtained:
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Substituting equations (B4) and (B5) into equation (B6) and rearranging the result gives
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APPENDIX C: PROOF OF STABILITY THEOREM

Consider a system with the characteristic equation of 1!u(s)e~qx"0, where q is
positive real and s is complex. Substituting u (s)"re*a and s"p#iu into the characteristic
equation gives

re~qp[cos(qu!a)!i sin(qu!a)]"1. (C1)

Resolving the above equation into its real and imaginary parts leads to

re~qp[cos(qu!a)]"1, re~qp[sin(qu!a)]"0. (C2, C3)

If Du (s) D(1 (thus Dr D(1), then from equation (C2), p is negative real since q is positive real
and Dcos(qu!a) D)1. This implies that all poles of the system are located on the left half
s plane. Therefore, the system is asymptotically stable when Du(s) D(1. On the other hand, if
the system is asymptotically stable, p must be negative real since all poles of the system are
located on the left half s plane. To satisfy both equations (C2) and (C3), Dr D(1 which implies
that Du (s) D(1. Moreover, if u (s) D"1, solving equations (C2) and (C3) leads to p"0,
implying that the system is marginally stable since all poles lie on the imaginary axis of the
s plane. However, if Du (s) D'1 (thus Dr D'1), then from equation (C2), p is positive real since
q is positive real and Dcos(qu!a) D)1. This implies that all poles of the system are located
on the right half s plane. Therefore, the system is unstable when Du(s) D'1. If the system is
unstable, using the same procedure as for the asymptotic stability, it can be shown that
Du (s) D'1.
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